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Abstract We present different means of classifying
protein structure. One is made rigorous by mathematical
knot invariants that coincide reasonably well with ordinary
graphical fold classification and another classification is by
packing analysis. Furthermore when constructing our math-
ematical fold classifications, we utilize standard neural net-
work methods for predicting protein fold classes from amino
acid sequences. We also make an analysis of the redundancy
of the structural classifications in relation to function and lig-
and binding. Finally we advocate the use of combining the
measurement of the VA, VCD, Raman, ROA, EA and ECD
spectra with the primary sequence as a way to improve both
the accuracy and reliability of fold class prediction schemes.

1 Introduction

Finding all the genes of the genome of an organism nat-
urally leads to the question of what proteins these genes
represent or correspond to and to what class they belong.
Concerning the classification it seems obvious to classify the
proteins according to their sequence of either nucleotide or
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amino acids—a task which is not straight forward due to the
alignment problems etc. The classification according to
sequence is more likely to tell about functionality rather
than structure. Such classes are called families. However, the
structure of a protein is much sought after in biotechnology,
e.g., in drug-design.

We shall in this paper address the issue of making a
rigorous structural classification of proteins and how to pre-
dict such classes of proteins from their sequences. Concern-
ing general structural classifications it has been shown [1,2]
that all the known three-dimensional protein structures can
be grouped into a smaller number of characteristic structural
classes consisting of domains from homologous proteins with
a similar topological configuration of their backbones. These
structural domains or the so-called folds of the proteins were
introduced in order to clarify the notion of structural similar-
ity. Such fold classes could contain entire proteins or well-
defined sub-domains of proteins. Pascarella and Argos [1]
have used topological similarity as a measure of fold class
homology, while Holm and Sanders [3] have used similar-
ity of distance matrices to determine fold class membership.
Orengo et al. [4] have reported a classification of proteins
from the protein structural database into either 150 homol-
ogous folds or 112 analogous folds from structural compar-
ison. Chothia [2] has postulated, based on known protein
sequences and structures that the total number of fold clas-
ses is expected to be circa 1,000. While it is feasible to
define membership to a fold class once the three dimen-
sional structure of the protein is determined, efforts to pre-
dict fold classes only from sequences have rendered little
success. The exceptions are those where there is significant
sequence homology between the protein whose structure is to
be determined and one whose structure is established. Most
frequently, sequences which have very much homology are
known to belong to the same fold class.
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In addition, spectroscopic measurements have been shown
to aid fold class assignment. Specifically the combination of
vibrational absorption (VA), vibrational circular dichroism
(VCD), Raman and Raman optical activity (ROA) in com-
bination with molecular dynamics simulations and density
functional theory (DFT) theory calculations has been shown
to be able to determine the backbone (secondary structure)
of l-alanine, l-acetyl l-alanine N′-methyl amide, l-alanyl
l-alanine and Leu-enkephalin [5–15]. A preliminary study
documenting the use of neural networks to predict the struc-
ture of peptides based on a combination of experimental
and DFT simulated VA, VCD, Raman spectra has appeared
[16,17]. A very feasible extension of this work is to use the
characteristic VA, VCD, Raman and ROA spectra of proteins
of known fold class and combine with work with the above
aforementioned work on sequence with known structure, to
predict the fold class of an unknown protein not only from
the sequence, but also the measured VA, VCD, Raman and
ROA spectra. Our preliminary work above, shows that this
work is well worth pursuing, and is being pursued by us. This
work will be presented in a future publication. In addition to
the VA, VCD, Raman and ROA spectra we foresee the use of
the electronic absorption (EA), electronic circular dichroism
(ECD) and Resonance Raman spectra to be of use [18–22].
Recently the feasibility of the calculation of all of the above
aforementioned spectra has been shown, but mostly in the gas
phase, using continuum solvent models, using explicit water
molecules and finally combining these approaches [7,9,14].

In most definitions of fold classes, each member would
have more than 50% sequence identity to each other, although
domains with far less sequence similarity could belong to
the same class. It is important that each protein within a class
would have a structure with a large topological similarity and
a similar packing pattern to other members of the class. The
details of the primary sequence in itself are less important.

The notion of fold classes is important for predicting new
protein structures using homology modeling. In homology
modeling an unknown three-dimensional protein structure is
inferred from other known three-dimensional protein struc-
tures whose amino acid sequences are similar to the sequence
of the protein in question. It has been shown [26–28] that one
can predict or model protein structures to high accuracy by
using structural information from proteins belonging to the
same fold class or family.

However, for protein sequences with very little homol-
ogy to other proteins there exists no method that can predict
the three-dimensional structure to high accuracy from their
sequence data alone. On the other hand proteins with little
sequence homology could be similar in structure to a whole
class of other structures or domains. It is apparent that protein
folding into a structure is coded by information that is not
transparent from sequential similarity alone. Several tech-
niques have been developed for inferring homology at the

structural level from fold class membership. Some of these
incorporate a combination of secondary structure prediction
schemes, functional similarity, recognition of key structural
motifs and use of machine learning methods for sequence-
structure mapping [3,29–33]. One method that successfully
utilizes the information of the structure of homologous pro-
teins uses artificial neural networks. The neural networks can
be trained exclusively on homologous proteins as a basis for
predicting a new protein structure from the corresponding
sequence. Such a scheme is useful only when the protein in
question has any relationship to any of the existing fold clas-
ses. The above aforementioned approach which combines
the sequence information with VA, VCD, Raman, ROA, EA
and ECD information also appears to be very promising.

The proposed scheme, which consists of two steps, rests
on the result that neural networks can be effectively trained to
induce features from a system that characterizes it. In the first
step, a feed-forward neural network is used to determine the
fold class of a protein from its sequence data. In the second
step, the predicted fold class with its characteristic domains is
used as input into a large recurrent neural network to predict
the distance matrix for the protein. Such a distance matrix
prediction should be accurate enough for constructing the
three-dimensional backbone structure for the protein, which
can then be subsequently refined by side chain placement and
molecular mechanics methods.

2 Classification of protein folds by knot invariants

The Writhe, that is known from the famous formula
“Link = Twist + Writhe” and steers coiling of double
stranded DNA and the Average Crossing Number, that is
related to the speed of DNA in electro gel experiments, are
two examples of global geometric measures of closed space
curves. Both of these geometric measures make sense for
open space curves and more interestingly they constitute
the basic building blocks of an infinite family of geomet-
ric measures called generalized Gauss integrals stemming
from modern Knot Theory.

One of these Gauss integrals is

I(1,3)(2,4) =
∫

�4

ω(t1, t3)ω(t2, t4)dt1dt2dt3dt4, (1)

where �4 is the 4-simplex given by 0< t1< t2< t3< t4< 1
and

ω (t, s) =
[
γ ′(t), γ (t)− γ (s), γ ′(s)

]
|γ (t)− γ (s)|3 . (2)

In a planar projection of the curve, γ , the configuration
(t1, t3)(t2, t4) defines a specific configuration of two cross-
ings. In the planar limiting case, I(1,3)(2,4) counts the number
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of times this crossing configuration occurs in this planar
projection. The family of generalized Gauss integrals has
the property that for any configuration of n crossings there is
a generalized Gauss integral that counts the occurrences of
this crossing configuration.

Calculating some of these Gauss integrals for protein back-
bones, one gets an absolute measure of protein geometry in
terms of real numbers. In currently unpublished work of P.
Røgen and B. Fain, it is shown that the CATH1.7 protein
structure classification essentially can be reproduced based
on 30 such geometric measures of the full length CATH
domains. Hence, the diversity of protein structures is captured
by 30 numbers [49].

3 Methodology

The basic elements of an artificial neural network, the neu-
rons, are the processing units which produce output from a
characteristic non-linear function of a weighted sum of input
data. A neural network is a group of such neurons and the
neurons can communicate with each other through mutual
interconnections. The network will gradually acquire a global
information processing capacity for classifying data by being
exposed (trained) to many pairs of corresponding input and
output data such that new output can be generated from new
input. If a set of input is denoted by {x j } and the correspond-
ing output is denoted by {yi } the process at each neuron i in
the network can be described by

yi = f

⎛
⎝∑

j

Wi j x j + ηi

⎞
⎠ (3)

where Wi j are the weights of the connections leading to the
neuron i , ηi and f are the characteristics of the non-linear
function for the neuron. As is obvious from the equation,
such type of networks can be considered as a non-linear map
between the input and output data.

The most straightforward type of neural networks
employed for this study were feed-forward networks of the
multi-layered perceptron type. These layers of neurons are
referred as, mentioned in the consecutive order, the input
layer, the hidden layers and the output layer. The reason for
choosing this network among many other types is its abil-
ity to be generalizable to molecular biology data [34–37].
The simple structure both with respect to processing of data
and training is an additional advantage with such a network.
The training was carried out using the back-propagation error
algorithm [38] which is also the most commonly used. The
training procedure is performed until a cost function C has
reached a local minimum e.g., by a gradient descent. The

cost function C is normally written as,

C = 1

2

∑
α,i

(
tαi − zαi

)2 (4)

which is simply the squared sum of errors; ti being the correct
target value and zi the actual value of the output neurons.

In order to evaluate the performance of the network, vari-
ous statistical measures have been proposed. In the case of a
dual valued output the Mathews correlation coefficient, CM

[40–42], was used to monitor the performance. If two pos-
sible output values are denoted by 0 and 1 (signifying fold
class membership or non membership) and if p is the number
of correctly predicted examples of 1s, p̄ the number of cor-
rectly predicted examples of 0s, q the number of examples
of 1s incorrectly predicted and q̄ is the number of examples
of 0s incorrectly predicted then we define the coefficient CM

as:

CM = p p̄ − qq̄√
(p + q)(p + q̄)( p̄ + q)( p̄ + q̄)

(5)

For complete coincidence with the correct decisions (ideal
performance) the measure is 1 and for complete anti-
coincidence the value of CM is −1. A poor net will give
C = 0 indicating that it does not capture any correlation in
the training set in spite the fact that it might be able to predict
several correct values.

4 Implementation

4.1 Integral classifications

In the next sections we distinguish strongly between integer
and real number classifications of protein folds. We shall first
be discussing how protein fold with integer values are repre-
sented in neural networks and how the prediction scheme is
implemented. Later we shall turn to real valued classification
of folds by either knots or packing.

The actual neural networks for predicting fold classes
are of the feed-forward type. The networks are trained on
a selection of proteins from each of 42 fold classes contain-
ing domain segments of proteins or often the whole pro-
teins. The input representation for each protein domain is a
20 × 20 matrix containing the relative frequencies of
dipeptides occurring in neighboring positions in the primary
sequence of the domain. To calculate these frequencies, the
number of occurrences of a dipeptide is counted in the pro-
tein sequence and divided by the total number of residues in
that sequence. All protein domains are transformed this way
into one input pattern of fixed size. Small insertions and dele-
tions from the protein sequence cause only small changes in
the dipeptide frequencies. The same holds true for rearrange-
ments of larger elements in the sequence that do not change
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the local sequences. There are many cases where members of
the same fold class differ mostly by permutations of sequence
elements. Such permutations of the primary sequence lead to
very similar dipeptide matrices which supports similar clas-
sification results. Each fold class is represented by one out-
put unit which should have an activation close to 1.0 if the
domain coded in the input layer is a member of that fold class.
In all other cases the activity should be close to 0. When an
unknown sequence is classified, the fold class corresponding
to the largest activation at the output unit is assigned to the
sequence. This is the usual “winner-takes-all” evaluation of
the output of a classifier. In order to facilitate the interpre-
tation of misclassifications all the fold classes were grouped
into larger super-fold classes that have a natural one dimen-
sional order inferred from physical properties of the folds.
The super-fold class prediction and the fine grained classifi-
cation should then assign classes that are close in this order.

4.2 Real valued classifications

In connection with neural networks, the strength of having
absolute measures of protein geometry is that the relation
between amino acid sequences and protein geometries may
be studied and predicted directly. In particular a neural net-
work can be trained to predict the Gauss integral values on
fragments of proteins with known structure. Combined with
the above mentioned result on protein structure classification
this neural network then predicts fold class from amino acid
sequences. The construction of such an neural network is an
issue of current research.

5 Fold-classification from packing analysis

Protein fold classifications from the literature, such as the
3D-ALI, have been used so far. At a more primitive level,
we have classified proteins into large classes of alpha, beta,
alpha + beta and alpha-beta proteins following Lesk and
Chothia [44]. In a more detailed scheme, the classification
of Pascarella and Argos [1], further enhanced by Walsh [45]
(Walsh, personal communication) has been utilized. In addi-
tion, a novel method for characterizing the fold topology of a
protein is presented here. While the average density inside a
protein is nearly a constant, the packing of residues is deter-
mined by the overall topology [46]. Arguably, all the informa-
tion pertaining to the three dimensional structure and hence
the topology of the protein is contained at the most refined
level in the distance matrix and at a less refined level in the
packing density. We define the latter as the number of pair-
wise atomic contacts in the protein as a function of distance.
The maxima and minima that occur in this packing density
are very dependent on the nature of the overall protein fold.
We have obtained this packing density for all the proteins in

the database and classified them based on the similarity of
the packing density features. Not surprisingly, this classifi-
cation groups proteins into classes that are entirely similar
to the earlier classification of Pascarella and Argos. Table 1,
presents the 13 super-fold classes obtained from the packing
density analysis. However, this method enables the creation
of a coarse-grained set of folds that encompasses several fold
class members of the Pascaralla and Argos set. This super-
fold class delineation is used in training the neural networks.
To our knowledge, this is the first effort to use a hierarchy of
fold classifications to obtain sequence-structure correlation
and prediction.

The frequency of contacts between atoms at various dis-
tances within a domain or a whole protein is plotted against
the measure of distances in Å along the horizontal axis and the
normalized frequency (occurrence) along the vertical axis.
This results in a characteristic contact distribution for each
structure of protein domains (see Fig. 1). Some structures are
represented by a very broad distribution while others have a
sharp delta-like distribution. The maxima in the normalized
frequency of the distribution is a characteristic signature of
the underlying lattice structure of the domain. For example
a typical protease structure like a zig-zag lattice will have a
distinct peak in the pair correlation distribution at the lattice
spacing length. The position, τ , of the peak in the distribution
was taken as a simple measure of the domain structure and
all the domain structures were hence classified into distinct
groups of folds using this criterion. Folds with the smallest
values of peak positions, τ , turned out to be small peptides,
while intermediate ranges of τ usually could represent globu-
lar proteins. Large values of τ represented immunoglobulins
and ac-proteases. Small values of τ thus signified little regu-
larity and large values represented highly regular underlying
lattice frames. The results of the performance of the neural
networks using the data provided by the τ dependent fold
class grouping will be presented in the following section.

6 Results

The main results in this paper are concerning the predic-
tion of fold classes from sequence alone since the fold class
represents both the secondary structure and the tertiary struc-
ture of the protein. The training set and testing set are both
constructed from the data set of the 42 classes of domains.
Roughly half of each fold class domains are used for training.
The rationale for choosing the 42 classes from the Pascarel-
la and Argos definition of folds, was to make certain that
there are enough members in each class in order to perform
a valid test. The fold class predictions are performed in three
different levels of detail. The first classification uses the 4
super-fold classes based entirely on the secondary structure
composition and arrangement in the proteins. The classifica-
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Table 1 List of Proteins forming the thirteen super-fold classes based on packing density

Permutation matrix for packing density based class prediction

true foldclassa predicted foldclass

1 2 3 4 5 6 7 8 9 10 11 12 13

1 gp1 mlt 0 0 0 0 0 0 0 0 0 0 0 0 1

2 crn 0 0 0 0 0 0 0 0 0 0 1 0 0

3 Inhibit pti rdx tox 0 0 4 0 0 0 0 1 0 0 0 0 0

4 ctf eglin hoe sn3 0 0 0 0 0 0 0 1 0 0 1 0 0

5 b5c gn5 hip utg 0 0 0 0 0 0 0 2 0 0 0 0 0

6 cc5 rnt 0 0 0 0 0 0 1 0 0 0 0 0 0

7 256b acx cytc cytc3 ferredox fxc

hmr il pab plasto plipase sns 0 0 0 0 0 0 10 2 1 0 0 0 0

ssi tmv tnf virus_prot wrp

8 ca_bind cla dfr etu gap gcr

globin hmg-2 igb lzm pap sod 0 0 0 0 0 0 3 27 3 0 2 1 0

wga

9 blm carbonic cyp hmg-1 ltn pgm

pyp rhd s_prot virus 0 0 0 0 0 0 1 2 6 0 0 1 0

10 Binding cpa kinase sbt tln 0 0 0 0 0 0 0 0 0 2 2 0 1

11 aat cpp icd nbd pgk xia 0 0 0 0 0 0 0 0 0 1 6 1 0

12 ac_prot barrel cat cts gls 0 0 0 0 0 0 0 2 0 0 2 4 0

13 acn 0 0 0 0 0 0 0 1 0 0 0 0 0

τ represents the peak position in the normalized frequency distribution for each class.
aThe names are as they appear in PDB files with the chain designation as an extension. From Ref. [54]

tions are based on proteins containing the secondary struc-
tures, only alpha, only beta, one alpha and one beta domain
and one containing a combination of alpha and beta second-
ary structure elements, respectively. In the second scheme,
13-fold classes each containing 3 members or more are
defined by the packing density scheme described above. By
using the τ measure we define a set of 13 super-fold clas-
ses that are used for prediction of the coarse fold class. In a
third scheme, the full set of 42 classes is used for fine grained
classification mentioned in ref. [54].

For the first case of 4 super-fold classes a network trained
up to 97.2% accuracy and had a test score of 90.4% with an
average Mathews coefficient of 0.81 which is a very high per-
formance compared to other secondary structure content pre-
dictors [40]. The analogous results, where the 13-super-fold
class set obtained from packing density analysis is used, were
presented in Table 1. This fold classification gives a less accu-
rate performance of training being up to 90% correct and the
test being 65% correct which render this classification to
be less useful for neural network based prediction schemes.
The third case that is based on much better distributed clas-
sification yields a remarkable performance of 100% on the
training set and with a test score of 78% in predicting a fold
class correct on the basis of the sequence. Furthermore, add-

ing the output of the 4 super-fold classes network to the input
of the 42 class based network enhanced its performance to
81.6% on the test with an average Mathews coefficient of
0.7. The fold class prediction is still more than 71% correct
for those test sequences with 0 to 25% sequence identity to
the training set, which is an important property for a large
scale application of this prediction method.

The results of predicting fold classes based on knot invari-
ance from sequence data is done by characterizing each fold
by 30 Gauss integrals being real numbers between −10 and
+10. The corresponding sequences to these folds are input
and outputs are vectors each of 30 real numbers. A network
trained to predict such vectors is about 80 percent correct
as long a fold class has more than one member. The sin-
gle member fold classes are called singletons and present a
problem.

7 Fold-class database

As a spin-off of the rather successful fold class predictions a
database has been constructed for public domain usage [24].
The DEF (Database for Expected Fold-classes) is made for
protein fold-class predictions from sequences in the SWISS-
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Fig. 1 Packing density for typical fold classes. Normalized frequency
of pair-wise contacts versus Distance in Å

PROT protein sequence data base and is used for making
predictions of fold-classes for any new sequence. In the DEF
database a sequence of amino acids is assigned a specific
overall fold-class, a super fold-class with respect to second-
ary structure content and a profile of possible fold-classes
along the sequence.

8 Discussion

An artificial neural network system has been constructed to
classify three-dimensional protein structures by predicting
what fold class they belong to on the basis of their sequence
alone. Once that is decided one may predict the correspond-
ing distance matrix e.g., by recurrent neural networks that
are trained on proteins from the chosen fold class and sub-
sequently construct a three-dimensional structure for the test
protein by a minimization procedure. The networks appear
to train surprisingly well (81.2% correct and an average
Mathews coefficient of 0.7) on the task of predicting fold

Fig. 2 (R)-Phenyloxirane structure, atom numbering for Table 1 from
Ref. [53]

classification, even for test proteins with a maximal sequence
identity of less than 25% to all training proteins.

The determination of the folds is similar to the determina-
tion of the topology of the protein backbone and that, on the
other hand, depends only on the overall packing of second-
ary structural elements. Furthermore the new classification of
folds that we proposed is partially dependent on the content
of secondary structures. Low values of the τ parameter rep-
resent alpha-rich fold classes and high values of τ represent
beta-rich fold classes.

In the case of prediction of fold classes based on knot
invariants the success rate is as good as other methods (around
80% correct), but the issue of singletons is problematic. How-
ever, a classification of protein by real numbers is itself an
achievement.

As example of the VA, VCD, Raman and ROA spectra
being used as supplementary data in addition to the primary
sequence, we show a comparison for Phenylalanine (Fig. 2)
of the DFT based VA, VCD (Fig. 3) and Raman and ROA
(Fig. 4) spectra simulations with the experimentally reported
spectra [50–52]. As one can see by the good agreement
between the calculated and experimental VA, VCD, Raman
and ROA spectra, the combination of experimental and the-
oretical simulation of these spectra can be used to not only
interpret and assign the vibrational spectra of biomolecules,
but also used to assign the secondary structure. By combining
experimental VA, VCD, Raman and ROA spectra of peptides
and proteins with either know X-ray or NMR structures with
supplementary spectra for other higher energy structures, the
combined approach of measuring the VA, VCD, Raman and
ROA spectra of proteins of known sequence and present-
ing this data along with the sequence data, one may hope
to improve greatly the accuracy and reliability of fold class
prediction, not only of the native state, but also of unfolded
states.

We also present the VA, VCD and Raman spectra for
the l-alanine zwitterion (LAZ). Here we have extended our
previous models of LAZ + 4 and 9 water molecules, up to
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20 water molecules. In the previous work we only kept the
strongly interacting hydrogen bonded water molecules. In
this work a complete solvation shell of hydrogen bonded
water molecules has been added. The initial positions were
determined by taking the lowest energy structure from our
Born Oppenheimer molecular dynamics simulation of the
LAZ in a droplet of water [56]. The optimized structure of
the LAZ plus 20 water molecule is shown in Fig. 5 and the
corresponding VA, VCD and Raman spectra with and with-
out the explicit water molecules included in Fig. 6. This is
the quenched structure of the complex and shows the real

Fig. 5 l-alanine zwitterion plus 20 water hydrogen bonded network,
B3PW91/6-31G* plus COSMO continuum model

Fig. 6 l-alanine plus 20 water molecule complex: VA, VCD and
Raman spectra with and without water molecules; B3PW91/6-31G*
plus COSMO continuum model

complexity of assigning the bands of a biomolecule to only
the solute. The bands are in similar regions with those of the
solvent. This results in strong coupling between the solvent
and solute modes. Additionally the strong hydrogen bonding
with the solute results in the water modes in this first solva-
tion shell inherently different than those in the bulk, When
one tries to do a solvent subtraction, one is only subtracting
out the bulk solvent modes. If one wishes to subtract out the
water modes strongly hydrogen bonded with the solute, then
one has a more difficult problem. One of the work arounds
for this has been to fit the bands with either either Gaussian
or Lorentzian line shape functions (or to simulate the spectra
with one of these functions). But here one is really sweeping
the problem under the rug, where one does not see and or
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realize that a problem exists. Our point here is only to point
out this problem, which we will present a more thorough
report on our progress in this area at a later date.

Another problem is to correlate the complicated band
shape features in the VA, VCD, Raman and ROA spectra
to specific structural information which can be used as the so
called identifiers. Here one can use not only the frequencies,
but also VA, VCD, Raman and ROA intensities or lack of
intensities. But to do this requires one to really be able to
identify the principle components in the spectra. In the past
one has assumed that the features are only due to the solute,
but we think that our example for the LAZ has shown this
not necessarily always to be the case.

Finally we would like to present one last example, the
so called alanine depeptide, N ′-acetyl l-alanine N ′-methyl
amide (NALANMA). This has been one of the most stud-
ied peptides, but surprising until 1998 the conformer of this
molecule had not been solved, either by NMR, EA, ECD,
VA, VCD, Raman and ROA or even a combination. This
again was due to the problem that the structure in aqueous
solution is not one of the structures which are stable mini-
mum on the PES of the isolated state. In Fig. 7 we show the
structure determined at the B3PW91/aug-cc-pVDZ level of
theory. The values of theφ andψ angles at this level of theory
are −98.68◦ and 133.36◦, versus the values at the B3LYP/
6-31G* plus Onsager continuum solvent level of theory being
−93.55◦ and 127.62◦, respectively. At the B3LYP/aug-cc-
pVDZ plus PCM level of theory the values are −91.68◦ and
133.36◦, respectively. So the effect of the larger basis set,
the alternative hybrid exchange correlation functional and
the alternative continuum solvation model do not appear to

Fig. 7 N ′-acetyl l-alanine N ′-methyl amide plus four water hydro-
gen bonded network, B3PW91/aug-cc-pVDZ plus COSMO continuum
model
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Fig. 8 Comparison of experimental and theoretical (N ′-acetyl
l-alanine N ′-methyl amide plus four water hydrogen bonded network
at B3LYP/aug-cc-pVDZ plus PCM continuum model level of theory)
Raman spectra and VA and VCD spectral simulations

be too large, and most importantly, at all levels of theory the
complex is stable.

But the ultimate criterion for us has been the agreement
between the VA, VCD, Raman and ROA spectral simula-
tions and the experimental spectra [7]. In Fig. 8 we present
a comparison of the experimental Raman spectra of
NALANMA and our spectral simulation at the B3LYP/aug-
cc-pVDZ plus PCM level of theory for the NALANMA plus
four water molecule complex. In addition, we present our
spectral simulation for the VA and VCD spectra. Here we
have subtracted out the contributions due to water molecules.
The agreement with the experimental Raman spectra if no-
ticable better using the PCM continuum solvent model and
the aug-cc-pVDZ basis set.

An additional measured and reported value for many chi-
ral molecules is the αD value. Here we report the predicted
αD for the NALANMA plus four water molecule complex
to be 79.39◦. This is the first reported value of this quantity
for a dipeptide molecular complex. As shown by our VA,
VCD, Raman and ROA simulations, this complex appears
to be stable. Hence it would be interesting to try to mea-
sure the αD for the NALANMA plus four water molecu-
lar complex in a molecular beam experiment. The relative
strength of the hydrogen bonds between water and other
water molecules and water and the dipeptide group is funda-
mental to biochemistry. X-ray and neutron diffraction studies
have shown that the mobility of these water molecules are
different. Hence it would be nice to do not only temperature
dependent VA, VCD, Raman and ROA experiments, but also
temperature dependent αD measurements, to see if this value
changes as the NALANMA plus N water molecular com-
plexes freeze in. Previously it has been shown that explicit

123



Theor Chem Account (2008) 119:265–274 273

water molecules are necessary to stabilize structures which
are not stable on the gas phase or isolated state potential
energy surface or using continuum solvent models [57].

The calculation of the tensors for the ROA spectral sim-
ulations requires one to calculate the G′ and A tensor deriv-
atives numerically, that is, calculate them at 6N displaced
geometries, in addition to calculating them at the optimized
geometry. For the NALANMA plus four water complex, this
requires 6 × 34 = 204 solutions to the coupled perturbed
Kohn Sham equations. Hence we will report the complete
set of VA, VCD, Raman and ROA spectral simulations in a
future work. The aug-cc-pVDZ basis set has been shown to
give almost quantitative values for the VA, VCD, Raman and
ROA spectral intensities, but this basis set does not appear
to optimal for simulations where the amino acids, dipeptides
and polypeptides are completely solvated, as was the case for
LAZ20WC simulation presented in Fig. 6 due to its large size.
A compromise appears to be to use either the 6-31G* basis set
(which we have used) or the slightly larger 6-31G** or DZP.
But here by adding polarization functions on the hydrogens,
this will increase the size of the basis set by 3 × the number
of hydrogens, which for the LAZ20WC would be 47 × 3 =
141 more basis functions. In a future work we will further
document the effect on using various basis sets, but the main
point which we wish to end with is that the spectral simu-
lations of the vibrational spectra of amino acids, dipeptides
and polypeptides must take into account the effects of the
first solvation shell of water molecules since they have been
shown to not only change the potential energy surface of the
isolated molecules, but also have large effects on the frequen-
cies and the intensities. Additionally the properties of these
waters are interesting in themselves, as they are the water
molecules which must be replaced on ligand binding. Hence
the relative binding strength of the of water and ligands in
the binding pocket can be studied with time and temperature
dependent vibrational spectroscopy studies. The combina-
tion of knowledge based methods (neural networks and knot
theory) and high level ab initio and density functional the-
ory appears to be a viable alternative to the methods which
other groups are pursuing to study these problems, without
some of the problems with labels (fluorescence spectroscopy
being one of the alternative techniques being used by many
research groups).
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